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DETERMINATION OF THE DEPTH OF THE PLASTIC REGION IN.-THE
PRESSURE OF A FLAT DIE ON A HALF-PLANE

T. P. Pukhnacheva UDC 539.2

Let a flat die of the length £ be pressed into a rectilinear boundary without friction
so that a pressure distribution q is created under the die. Such a problem was first examined
by Prandtl with the assumption that the stresses were continuous everywhere except at the
ends of the die and with the use of a constant yield condition (see [1] for example).

Let o, and o, be the principal stresses in the plane (%, y). By means of 2p = o; + o,
and 2r = ¢, — 0,, any yield condition for an isotropic material can be written in the form
r = 1(p). .

Using ¥ to designate the angle between the first principal direction and the x axis, we
express the components of the stress tensor through p, 7, and ¥:

Oy = P - T€08 2y, Oy = p — T Cos 2,

(1)

Opy = T 8in 2¢.

Having inserted the equilibrium equation into (1), we obtain the following system of
equations:
Ap + v cos 2¢)/dz —- O(t sin 2¢)/dy = 0,

d(t sin 2¢)/dx + (p — T cos 2¢)/dy = 0. ‘ (2)

We assume that jr’] < 1. Then system (2) is hyperbolic. Two families of characteristic
curves and relations along these curves can be written for the system:

(cos 2 + v')dy = (sin 2 - V1T — (¥ ))dz,
» J—
2
P + gz%?(ﬂ— dg = r — const,
Py
(cos 2¢ + 7)dy = (sin 2 — V' T — (v ))dx,
L P
"2
w—g—l/i—;”—) dE = s — const,
Py

We will examine the stress field in the plane of the flows (Fig. 1) and the plane of the
characteristics. The simplest stress field develops in region ABA;;: py, = 7{(py) — 4, ¥ = 0.
This region corresponds to the origin of the coordinates in the characteristic plane. The
region A,;BA,; contains a simple centered s-wave, while region AA,;A,, also contains a simple
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Fig. 1

centered r-wave. Finally, the region Aj;A;,A)A,; is the region of interaction of the two
simple centered waves. From the right of the line B4, p, = —1i(p)), 2¢ = =.

It is known that the Prandtl solution is complete, the resulting velocity field is
kinematically allowable, and the solution can be continued into rigid zones as far as desired.
In the case of an arbitrary yield condition, as before, the Hencky theorem remains valid. By
virtue of this theorem, continuation of the extreme right r-characteristic and the extreme
left s-characteristic should intersect. We will refer to the point of intersection yx, on
the y axis, as the depth of the plastic zone, and we will explain the method of its determin-
ation.

R
742
Let us examine the parameters r and s along Aj;A,;. We have s = 0 or ¢ =%j‘ ﬂ—é—;ﬁ)—-
Po
4 » Py
1 - .
df = 757»@) dE. Thus, along A;;A, r=j. A()de. From this, 74, =74, =r,= j‘ A(E)dE =2y lo=n,

By Py Py

I
|

Being a function of r and s, the function 7(p) will have the same notation as before.
We introduce the new variable #(r — s) through the relation v'(r—s)= —cos8(r —s). Then the
equilibrium equations in the plane of the characteristics in the region A;A,A,,A,, take the
form

dz r+s4+0(r—s)\oy oz rd-s—0(r—s)\dy
a—r“g(f)a‘:—o’ 5;+tg(-—z‘——>£-=°~ (3)

We designate 2o(r, s) =r + s — 0(r —s), 2B(r, s) =r + s + 0(r — 3).

Since the characteristics AjA,, and Aj;A,; and the distributions of the sought variables
p and y along these curves are known, we can obtain conditions for p and ¥ on part of the
boundary of the region. Then using the image ih the characteristic plane, we determine the
conditions for x and y on segments of the characteristics:

r

z(r,0) =14 cexp (—%—5 ctgﬁ ®) dg) sina (r, 0) (sin B (r))—V2,
0 (4)

8

y(0, s) =cexp (—;—j‘ctg 0(—§) dE) cos P (0, s) (sin O (— s))~/2, ¢ = const.
. 0

Equations (3) and (4) constitute a Gurs problem. Its solution exists locally and is
unique. However, this is no longer obvious for the entire square [0, n][—x, 0], since the
coefficients are discontinuous inside the square along the lines r + s = ¥(xr — §). We will
introduce new variables, having subdivided the square into two triangles:

u==zctgfpt+y,v=ax+ytga, r=0,s>=—r,

U=a-+ytgh, V=2xciga +y,r=0, s —r. )
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TABLE 1

No. [ ¥x, Cm g, kg /em?® | No. b yu, cm ¢ kg fcm?
1 0 —619,8 132,2 1 —0,1 —848,1 173,8
2 0 -—619,8 0,514 2 —0,6 —14107,3 6,867
3 0 —247.9 — 3 —0,6 —5642,9 —
1 | —0,01 | —86384 135,6 1 | —0,6 | —14107,3 | 1765.8
2 —0,3 —1860,1 1,329 2 —0,8 | —370162,4 74,06
3 —0,3 —T44 — 3 —0,8 | —148064,9 —_
1 —0,06 —744,5 155,1
2 | —0,4 | —3114.2 2,048
3 —0,4 —1245,7 —
Remarks: 1) rocks with £ = 100 cm, a = 25.714 kg/cm?, and
values of a and b taken from [2]; 2) clayey soil with £ = 100
cm, a = kg/cm?, and values of a and b taken from [3]: 3) sandy

soil with £ = 400 ¢m, a = 0, and q = 0 [3].

They are connected by a simple linear relation ¢ = with coefficients which

Uectg v = Vigae,

are continuous on the line r + s = 0.
The following relations are satisfied for u, v, U, and V:

3 2L8Y g wotgh—u) =0, (6)

%+ mm&w utgay=0, r>0, s=-—r,

(¢t
¥ e (Vigh—U) =0,

(N

‘;[r]+0‘tgﬁ)g2(V Uctga) =0, r>0, s<<—r;

v(r,0) =1, UQ©, s) = —1; .
u(r, —r) = U(r, —r) ctg p(r, —r}, (8)
vlr, —r) = V(r, —1) tg ofr, —71),

where g, = (tga-ctgp — 1) g,

If we change over to a system of integral equations, it is not hard to show that a
solution to problem (6)-(8) for (r,s) = [0, n] X [—mxn, 0} exists and is unique. Its smocthness
depends ultimately on the smoothness of the function r(p) and the compatibility conditions at
zero. TFor y, we use (3) to obtain the expression y = g,(v ctg f — u). The value of y(=,

-n) = yx will determine the size of the plastic zone along the y axis.

{ctga-tgp — 1)*

To solve problem (6)-(8), we constructed a stable second-order difference scheme based
on the Crank—Nicolson method. 1In the case when 7 is a linear function 7(p) a + bp, the
proposed algorithm is realized in the form of a program in Fortran. The program assigns
three constants: a, b, and the length of the die Z. The operation of the program gives us
the values of ys and q.

Vit

dg = 21

Py

ViZs

To determine the limiting pressure g, we used the expression n;z(g___~z?_
a - ©

a 117
— 2 ’

u—v
T[i -—mexpk—— Vi

2) as b » 0. This result is consistent with the expression for the limiting pressure in the
case of a constant yield condition.

1ni
Py

—b
e b It is easily seen that q - a{mx +

{a—bg){(1+b) ¢

from which g¢=

The computing time on a 20 x 20 grid of points is about 30 sec on a BESM-6 computer.
results of the calculations are shown in Table 1.
to a tensile transformation,
length.

The
Since the initial system (2) is invariant
it is sufficient to perform calculations for one value of die
For the remaining values, the sought depth vy is determined by simple multiplication.

We express sincere gratitude to B. D. Annin for his constant attention to the work and
his valuable advice.
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